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Abstract

Using a Fourier-Bessel representation for the 
uctuating (turbulent) elec-

trostatic potential, an equation governing the sheared-
ow modes in toroidal

geometry is derived from the gyrokinetic Poisson equation, where both the

adiabatic and non-adiabatic responses of the electrons are taken into account.

It is shown that the principal geometrical e�ect on sheared-
ow modes of the

electrostatic potential is due to the 
ux-surface average of 1=B, where B is

the magnetic �eld strength.

Pacs # : 52.35Kt, 52.30Jb, 52.35Ra
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I. INTRODUCTION

It is now generallly accepted in the fusion community that low-frequency, small-scale

instabilities (eg. drift waves, Ion Temperature Gradient-driven (ITG) modes) are major

contenders for the anomalous, cross-�eld transport1;2 observed in tokamaks3 and stellara-

tors4. There is some experimental evidence5 that (equilibrium) sheared 
ows (or zonal


ows6) can have a strong impact on the turbulence-driven cross-�eld transport7. Therefore

an accurate calculation of sheared-
ow modes in toroidal geometry is an important issue.

In this paper, sheared-
ow modes in toroidal geometry are calculated from the gyrokinetic

Poisson's (GKP) equation8. A change of coordinate system allows us to write the 
uctuating

electrostatic potential in terms of Bessel-Fourier series. The case of a cylindrical plasma has

been considered by Li, Lee and Parker. In an unpublished report, these authors discuss

the solution of the full GKP in cylindrical geometry with circular magnetic surfaces and no

azimuthal magnetic �eld. By introducing a coordinate transformation, we extend the work

of Li and co-workers to toroidal geometry; furthermore, the main goal of this paper is to

consider the calculation of sheared-
ow modes in toroidal geometry, rather than the solution

of the (full) GKP in toroidal geometry, which requires a numerical approach9. It is shown

that the principal geometrical e�ect on sheared-
ow modes is due to the 
ux-surface average

of the inverse of the magnetic �eld strength. The paper is organized as follows; in section

II, we introduce the gyrokinetic Poisson's equation; magnetic, toroidal (Shafranov-like) and

cylindrical coordinate systems are discussed and the tranformation between guiding center

and particle coordinates are given in section III; in the same section, the 
ux-surface aver-

age of the GKP equation is derived and an equation governing the sheared-
ow modes in

toroidal geometry is obtained; we conclude with some remarks in section IV.
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II. GYRO-KINETIC POISSON EQUATION

Assuming that the Debye length is much smaller than the ion thermal gyroradius and

neglecting electron gyroradius e�ects, the GKP equation can be written as8;10;11

Z
dRgc

Z
dv

 
Fi +

ee�
miB

@Fi

@�

!
Æ (Rgc � r+ �) = ne ; (1)

where e� � �(r) � h�igc (Rgc;v), r = Rgc + � is the particle position, Rgc is the guiding

center position, h:::igc denotes a gyrophase average keeping the guiding center position �xed,

� � bejj�v=!c is the ion gyroradius, bejj � B=B is the unit vector along the con�ning magnetic

�eld, !c is the ion cyclotron frequency, � = v2?= (2B) is the magnetic moment,Fi is the (total)

ion guiding center distribution and ne is the electron density. The aim of this paper is to

calculate the 
ux-surface-averaged component of the electrostatic potential, h�iS, from the

GKP equation (1) in toroidal geometry. The operation
R
dRgc [:::] Æ (Rgc � r+ �) acts to

transform the guiding center variables fRgc;vg to the particle variables fr;vg. Although

Fi, h�igc and B are functions of the guiding center variables, the integrand in equation

(1) also depends on the particle variable fr;vg through �. We write the ion distribution

function as Fi = Fi0 (equilibrium)+ ÆFi (
uctuation) and assume that the equilibrium part

of Fi is Maxwellian

Fi0 =
n0 (Rgc)

2�v2thi
exp

�
��B=v2thi

�
f
�
Rgc; vjj

�
; (2)

where vthi � (Ti0 (Rgc) =mi)
1=2 is the ion thermal velocity and f satis�es the normalization

condition
R+1
�1 dvjjf

�
Rgc; vjj

�
= 1. The volume element in velocity space is de�ned as

d3v � 2�v?dv?dvjj. Assuming that j@ÆFi=@�j � j@Fi0=@�j and using Fi0 (Rgc) � Fi0 (r) and

Ti0 (Rgc) � Ti0 (r), carrying out the integration over vjj in equation (1), the GKP equation

becomes

Z 1

0

De�E
part

V? exp
�
�V 2

?=2
�
dV? =

Ti0 (r)

en0 (r)
(ni � ne) ; (3)

where V? � v?=vthi is the normalized perpendicular velocity, h:::ipart denotes a gyrophase

angle keeping the particle position �xed and
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ni �
Z
dRgc

Z
dvFi (Rgc;v) Æ (Rgc � r+ �) (4)

can be calculated numerically by keeping the guiding center position �xed. The electron

density can be written as ne = n(A)e + n(NA)e , where n(A)e and n(NA)e are, respectively, the

adiabatic and non-adiabatic parts of the electron density. The adiabatic response if of the

form n(A)e / � � h�iS, where h:::iS denotes an average over the magnetic surface (see next

section).

III. MAGNETIC AND TOROIDAL COORDINATES

We consider a fully 3-dimensional con�guration with closed, nested magnetic surfaces.

The con�ning magnetic �eld B is written in straight-�eld line coordinates
n
�; �; �

o
as

B =r��r	 ; (5)

where � � � � q� is the �eld line label, 2�	 is the enclosed poloidal 
ux, � is the magnetic

poloidal angle and � is the magnetic toroidal angle. The radial label is denoted � and,

by de�nition, B�r� � 0. There is some freedom in specifying the radial label; here, for

convenience, we de�ne � �
q
 T= 

(b)

T , where  T is the toroidal 
ux enclosed within the

magnetic surface, and  
(b)

T is  T evaluated at the plasma boundary. By construction the

radial label runs from 0 (magnetic axis) to 1 (last closed magnetic surface). The magnetic

surfaces can be speci�ed in cylindrical coordinates; for instance, in the equilibrium code

VMEC12;13 an expansion in Fourier series is used

Rl = Rl

�
�; �; �

�
=

MmaxX
M=0

+NmaxX
N=�Nmax

RMN cos (�MN)

Zl = Zl
�
�; �; �

�
=

MmaxX
M=0

+NmaxX
N=�Nmax

Zmn sin (�MN) (6)

�l = �l
�
�; �; �

�
= � �

2�

Nper

MmaxX
M=0

+NmaxX
M=�Nmax

e�MN sin (�MN)

where �MN � M� + NperN� and Nper is the number of �eld periods of the con�guration.

For intermediate analytical calculations, it is convenient to work with the local toroidal
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coordinate system frL; �L; �Lg shown in Fig 1. In the plane �L = const, the cylindrical

radius RL and the height ZL are

RL = R0 + rL cos �L

ZL = rL sin �L : (7)

Here R0 is the average radius of the magnetic axis de�ned as

R0 �
1

4�2

Z 2�

0
d�

Z 2�

0
d�RL

�
� = 0; �; �

�
: (8)

This de�nition is convenient for con�gurations with helical magnetic axis (e.g. heliac-type

con�gurations). The curve rL = const describes a circle in the plane � = const. Note that

in general r��rrL 6= 0, so that B�rrL 6= 0 along the rL = const curve. Using equations

(6), one can invert equations (7) to get

tan �L
�
�; �; �

�
=

ZL
�
�; �; �

�
RL

�
�; �; �

�
�R0

(9)

and

rL
�
�; �; �

�
=

�h
RL

�
�; �; �

�
�R0

i2
+ ZL

2
�
�; �; �

��1=2
; (10)

where the explicit dependence on the magnetic coordinates
n
�; �; �

o
is shown. Although

the inverse transformations (9,10) are exact, the fact that, in general, r��rrL 6= 0, com-

plicates the representation of the 
uctuating electrostatic potential � in the gyrokinetic

Poisson equation. As we shall see below, it is convenient to introduce a 
ux surface-

averaged toroidal system fr; �; �g. The radial label is de�ned as r �
D
rL
�
�; �; �

�E
S
=a

where a �
D
rL
�
� = 1; �; �

�E
S
and h:::iS denotes an average over the magnetic surface. For

an arbitrary function F , hF iS is de�ned as

hF iS (�) �
1

A (�)

Z 2�

0
d�

Z 2�

0
d�J

�
�; �; �

�
F
�
�; �; �

�
; (11)

where J �
h
r��

�
r��r�

�i�1
is the Jacobian of the transformation and

A �
Z 2�

0
d�

Z 2�

0
d�J

�
�; �; �

�
(12)
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is the area of the magnetic surface � = const. For a con�guration with a single magnetic

axis, the relation r = r (�) is monotonous in � and it can be easily inverted. Then we may

write the 
uctuating electrostatic potential as

� =
1X
l=1

1X
m;n=�1

�lmnJm (�mlr) exp [i (m� + n�)] ; (13)

where �ml is the l
th zero of the Bessel function of order m. We note that, locallly, � and

� in the above equation are dependent on the magnetic coordinates
n
�; �; �

o
. Multiplying

equation (13) by rJm (�mlr) exp (�im�� in�) and integrating over r; � and � yields the

coeÆcients �lmn

�lmn =
1

2�2J2
m+1 (�ml)

Z 1

0
dr

Z 2�

0
d�

Z 2�

0
rJm (�mlr) exp (�im�� in�)� (r; �; �)d� ; (14)

where we have used the relation of orthogonality15 of Bessel functions

Z 1

0
xJN(�x)JN (�x)dx =

Æ(�� �)

2
[JN+1 (�)]

2
: (15)

The diÆculty in calculating the 
ux-surface average of the GKP equation (1) arises in theD
h�igc

E
part

term. In particular we must transform back and forth between particle and

guiding center variables; it is then convenient to use the cylindrical coordinates fR;Z; �g

and the local toroidal coordinates fr; �; �g (right-handed in that order). It is easy to show

the unit vectors in the local toroidal coordinates can be written as

br = cos � cR+ sin � bZ = +cos � cos� bx� cos � sin � by + sin � bz
b� = cos � bZ� sin � cR = � sin � cos� bx+ sin � sin � by + cos � bz (16)

b� = � sin� bx� cos � by :
Then one can use the set (r0; �0; �0) to label the guiding center position, and the particle

position r (r; �; �) = Rgc (r0; �0; �0) + � can also be written as (Fig 2)

R0
cR+ rbr = R0

cRgc + r0br0 + � ; (17)

where cRgc � cos �0 bx� sin�0 by. Noting that the particle velocity can be written as (Fig 3)
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v = vjjbejj + v?
�
cos'bn+ sin'bb� ; (18)

where bn �
h
r	= (r	�r	)

1=2
i
r0;�0;�0

is the unit normal vector, bejj � B=B is the unit

vector along B, bb � hbejj�bni
r0;�0;�0

is the unit binormal vector, and ' is the gyroangle, the

components of equation (17) yield [neglecting corrections O (�2=R2
0) and higher]

�� �
��b�0

R
; (19)

where, as before, R = R0 + rcos � is the cylindrical radius; and

r cos�� � �
00

cos 
00

= r0

r sin�� � �
00

sin 
00

= 0 : (20)

where we have introduce the new variables �
00

and  
00

such that

�
00

sin 
00

= � sin 
�bb�b�0�+ � cos 

�bn�b�0�
�

00

cos 
00

= � cos (bn�br0) + � sin 
�bb�br0� (21)

and  � ' � 3�=2, Using the Fourier-Bessel representation (13) and taking into account

equations (19,20,21) on can show that (appendix A)

D
h�igc

E
part

=
1X
l=1

1X
m;n=�1

�lmn exp (im�+ in�)

8<:
1X

k=�1

(�1)
k
Jk
�
�ml�

00
�
Jk
�
kt�

00
�

�Jm+k (�mlr) J0
�bk�00

�
+
�ml

4
�

00

1X
k=�1

(�1)k Jk
�
�ml�

00
�
Jk
�
kt�

00
�

� [Jm+k+1 (�mlr)� Jm+k�1 (�mlr)] [J1 (x+)� J1 (x�)] g : (22)

Here kt � ng=R, where g �
�bb�b�0

�
=
�bb�b�0�, is the toroidal wavenumber; kp � m=r is the

poloidal wavenumber; bk � kp + kt and x� �
�bk � 1=r

�
�

00

. In the limit B� 7! 0, it can be

shown (appendix B) that equation (22) reduces to

D
h�i

gc

E
part

=
1X
l=1

1X
m;n=�1

�lmn exp (im� + in�)Jm (�mlr) J0
2 (�ml�) ; (23)

which is the expression derived by Li et al. Unlike the cylindrical case, we note thatD
h�igc

E
part

depends explicitely on the poloidal and toroidal wavenumbers. Substituting
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� [equation (13)] and
D
h�igc

E
part

[equation (22)] in the GKP equation (3), using the inte-

gral representation of the Bessel functions14 and carrying out the integration over V? yields

(appendix B)

1X
l=1

�l00

(
J0 (�0lr)

h
1� exp

�
�C2

l =2
�i

+
(h�iiS =r)

�(2)
J1 (�0lr)Cl

 
1 �

C2
l

2

!
exp

�
�C2

l =2
�)

= D (r) ; (24)

where Cl � �0l h�iiS; here h�iiS is the 
ux surface average of the ion thermal gyroradius and

the right-hand side, D (r) � Ti0
h
hniiS �

D
n(NA)e

E
S

i
= (en0), can be evaluated numerically. In

deriving the expression for D (r) we have taken into account the fact that n(A)e / �� h�iS

so that
D
n(A)e

E
S
� 0. In equation (24), corrections O

h
(h�iiS =r)

2
i
� 1 and higher have been

neglected. Since h�iiS / h1=BiS , it is clear from equation (24) than the principal geomet-

rical e�ect on sheared-
ow modes is due to the 
ux-surface average of 1=B. However this

geometrical dependence is nonlinear. Finally it is worth pointing out that the coeÆcients of

�l00 tend asymptotically towards zero as Cl 7! 0, as it should be; the limit Cl 7! 0 (which

is the counterpart of k?�i 7! 0 in slab geometry) correspond to modes that cannot have a

radial structure. If higher-order corrections were to be taken into account, the coupling be-

tween the �l�10 modes and 
ux-surface averaged equilibrium quantities should be retained

in equation (24). Therefore the calculation of sheared-
ow modes in low-aspect-ratio con-

�gurations (e.g. spherical tokamaks) would require a di�erent approach than presented in

this paper.

There are various mechanisms that can excite sheared-
ow modes in toroidal geometry.

For instance, it has been shown by Diamond and Kim that the poloidal 
ow in a toroidal

plasma can be accelerated when there is a gradient in the turbulent Reynolds stress16. As

shown by Diamond et al6, zonal 
ows can be generated by modulational instability of a

drift-wave turbulence and, in turn, regulate the turbulence. Furthermore any mechanism

that can in
uence the fraction of non-adiabatic electrons can also modify the sheared-
ow

modes, through a modi�cation of the `source term' on the right-hand side of equation (24);

the relative importance of the non-adiabatic electrons is of course model dependent.
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IV. CONCLUDING REMARKS

In this paper, an equation governing sheared-
ow modes in toroidal geometry has been

derived. By introducing a local system of Shafranov-like toroidal coordinates and by using

a Fourier-Bessel representation (which exploits the toroidicity of the con�guration) for the

electrostatic potential, the 
ux-surface average of the gyrokinetic Poisson has been obtained.

It has been shown that the principal geometrical e�ect on sheared-
ow modes is due to

h1=BiS, where h:::iS. The equation for sheared-
ow modes (24) can be solved numerically

by quadrature.
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APPENDIX A: GYRO-PHASE-AVERAGED ELECTROSTATIC POTENTIAL IN

TOROIDAL GEOMETRY

The basic coordinate systems used in this Appendix are the cylindrical coordinates

fR;Z; �g and the local toroidal coordinates fr; �; �g. The unit vectors in cylindrical co-

ordinates can be decomposed onto a local Cartesian system: cR = cos � bx � sin� by,
b� = � sin� bx � cos � by and bZ = bz. The unit vectors in the local toroidal coordi-

nate system fr; �; �g can now be determined; since br and b� are orthogonal, we note that

br = �br�cR�cR+
�br�bZ� bZ and b� = b��br so that br = cos � cR+sin � bZ and b� = cos � bZ�sin � cR.

In explicit form, we have

br = +cos � cos � bx� cos � sin� by+ sin � bz
b� = � sin � cos� bx+ sin � sin� by + cos � bz (A1)

b� = � sin� bx� cos � by :
The particle position vector, r, can be written as r = Rgc+�, where Rgc = Rgc (r0; �0; �0) is

the position of the guiding center and � = bejj�v=!c is the gyroradius vector; here bejj � B=B

is the unit vector along B. The local unit vectors associated with Rgc are similar to Eq (A1)

with the replacement � 7! �0 and � 7! �0. Then we obtain

br = (cos � cos �0 cos��+ sin � sin �0 ) br0 + (sin � cos �0 � cos � sin �0 cos��) b�0
+ cos � sin�� b�0

b� = (cos � sin �0 � sin � cos �0 cos��) br0 + (cos � cos �0 + sin � sin �0 cos��) b�0
� sin � sin�� b�0

b� = �cos �0 sin�� br0 + sin �0 sin�� b�0 + cos�� b�0 : (A2)

where �� � ���0. The particle velocity can be written as v = vjjbejj+v? �cos'bn+ sin'bb�,
where bn � h

r	= (r	�r	)1=2
i
r0;�0;�0

is the unit normal vector, bejj � B=B is the unit vector

along B, bb � hbejj�bni
r0;�0;�0

is the unit binormal vector, and ' is the gyroangle (Fig. 2).
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Then we may write the gyroradius vector as � = !�1c

�bejj�v� = �
�
cos'bb� sin'bn�, where

� � v?=!c. Without loss of generality, the relation r = Rgc + � can be written as

R0
cR+ rbr = R0

cRgc + r0br0 + � ; (A3)

where cRgc � cos�0 bx � sin�0 by. Taking the scalar product of equation (A3) with br0; b�0
and b�0, noting that cRgc�

b�0 = br0�b�0 = 0, cR�b�0 = cos � br�b�0 � sin � b��b�0 = sin��, cR�br0 =
cos � br�br0 � sin � b��br0 = cos �0 cos��, cR�b�0 = cos � br�b�0 � sin � b��b�0 = �sin �0 cos��,

neglecting corrections O (�2=R2
0) and higher we get

sin�� =
��b�0

R

r cos (� � �0)� r0 = ��br0 (A4)

r sin (� � �0) = ��b�0 :
The geometrical e�ects are contained in the ��br0, ��b�0 and ��b�0 terms. Introducing a new

gyroangle  � '� 3�=2, we obtain the following set of equations

r cos�� � � cos (bn�br0) = r0 + � sin 
�bb�br0�

r sin��� � sin 
�bb�b�0� = � cos 

�bn�b�0� (A5)

It is convenient to introduce new variables �
00

and  
00

such that

�
00

sin 
00

= � sin 
�bb�b�0�+ � cos 

�bn�b�0�
�

00

cos 
00

= � cos (bn�br0) + � sin 
�bb�br0� (A6)

Then we may re-write equations (A5) in a simpler form

r cos�� � �
00

cos 
00

= r0

r sin�� � �
00

sin 
00

= 0 : (A7)

Using (A4) and  = ' � 3�=2, we note that �� ' �
h
cos 

�bn�b�0

�
+ sin 

�bb�b�0

�i
=R; in a

tokamak with B� � B�, one gets bb 7! b�0 so that �� 7! 0 and the problem is essentially

two-dimensional. To leading order, one can show that
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�� '
�

00

r0
sin 

00

�� ' f
�

00

R
cos 

00

+ g
�

00

R
sin 

00

; (A8)

where

f �
bn�b�0bn�br0 and g �

bb� b�0bb�b�0 : (A9)

In a low-� tokamak plasma with circular magnetic surfaces, f = 0 and g � B�=B� = O (�)�

1, where � is the inverse aspect ratio. It is easy to see that f is related to the non-circularity

of the magnetic surfaces; in general, we expect f � g (at least in the average sense). In the

complex plane, equations (A7) can be written in compact form as

r exp (i�) = �
00

exp
�
i 

00

+ i�0
�
+ r0 exp (i�0) : (A10)

For an arbitrary function F , we de�ne hF igc = (2�)
�1 R+�

�� F (r; �; �; ') d' (for �xed guiding

center position) and hF ipart = (2�)�1
R+�
�� F (r0; �0; �0; ') d' (for �xed particle position). For

�xed guiding center (�xed r0; �0; �0), one can use Graf's theorem15

JN (w) exp (iN�) =
1X

k=�1

JN+k (u)Jk (v) exp (ik�) ; (A11)

where u; v; w and � satisfy w = (u2 + v2 � 2uv cos�)
1=2
, u � v cos� = w cos �, v sin� =

w sin �, to get

Jm (�mlr) exp [im (� � �0)] =
1X

k=�1

Jm+k (�mlr0)Jk
�
�ml�

00
�
exp

h
�ik

�
� +  

00
�i

: (A12)

Similarly, for �xed particle position, Graf's theorem (A11) yields

Jm (�mlr0) exp [im (�0 � �)] =
1X

k=�1

Jm+k (�mlr)Jk
�
�ml�

00
�
exp

h
ik
�
� � �0 �  

00
�i

: (A13)

We multiply equation (A12) by exp (in�+ im�0) = exp (in�0 + im�0) exp (in��) and

operate with h:::igc on the resulting equation

hJm (�mlr) exp (im� + in�)igc = exp (im�0 + in�0)
1X

k=�1

Jm+k (�mlr0)Jk
�
�ml�

00
�

�
D
exp (in��) exp

h
�ik

�
� +  

00
�iE

gc
(A14)
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Taking into account jf j � jgj, we may write in�� � kt�
00

sin 
00

; here kt � ng=R is the

toroidal wavenumber where, as before, R = R0 + r cos � is the cylindrical radius. Then

hJm (�mlr) exp (im�+ in�)igc = exp (im�0+ in�0)
1X

k=�1

Jm+k (�mlr0) Jk
�
�ml�

00
�
exp (�ik�)

�
D
exp

�
ikt�

00

sin 
00

� ik 
00
�E

gc

= exp (im�0+ in�0)
1X

k=�1

(�1)
k
Jm+k (�mlr0)Jk

�
�ml�

00
�
Jk
�
kt�

00
�

(A15)

= exp (im�+ in�) [exp (�im��) exp (�in��)

�
1X

k=�1

(�1)
k
Jm+k (�mlr0)Jk

�
�ml�

00
�
Jk
�
kt�

00
�35 ;

where we used the integral representation for Bessel functions14

JN (x) =
1

�

Z �

0
cos (x sin � �N�) d� =

i�N

�

Z �

0
exp (ix cos �) cos (N�) d� : (A16)

Using the recurrence relation14, dJN=dx = [JN�1(x)� JN+1(x)] =2 (for N integer), we may

write and

Jm+k (�mlr0) = Jm+k (�mlr) +
�ml

2
�

00

cos� [Jm+k+1 (�mlr)� Jm+k�1 (�mlr)] + ::: ; (A17)

in equation (A15); operating with h:::ipart (keeping r; � and � constants) on the resulting

equation, one gets

D
hJm (�mlr) exp (im� + in�)igc

E
part

= exp (im� + in�)

8<:
1X

k=�1

(�1)
k
Jk
�
�ml�

00
�
Jk
�
kt�

00
�

� Jm+k (�mlr) hexp (�im��� in��)ipart

+
�ml

2
�

00

1X
k=�1

(�1)k Jk
�
�ml�

00
�
Jk
�
kt�

00
�

� [Jm+k+1 (�mlr)� Jm+k�1 (�mlr)]

� hcos� exp (�im��� in��)i
part

+ :::: g (A18)

where � = �� �  
00

and m�� � kp�
00

sin 
00

, where kp � m=r is the poloidal

wavenumber. Let bk � kp + kt and use the integral representation (A16) to show that

hexp (�im��� in��)ipart = J0
�bk�00

�
. Write cos � = [exp (i�) + exp (�i�)] =2 to obtain

hcos � exp (�im��� in��)ipart =
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D
exp

�
�ix� sin 

00

� i 
00

�E
part

=2+
D
exp

�
�ix+ sin 

00

+ i 
00

�E
part

=2 = [J1 (x+)� J1 (x�)]=2,

where x� �
�bk � 1=r

�
�

00

. Combining the above results we can write

D
hJm (�mlr) exp (im� + in�)igc

E
part

= exp (im�+ in�)

8<:
1X

k=�1

(�1)
k
Jk
�
�ml�

00
�
Jk
�
kt�

00
�

�Jm+k (�mlr) J0
�bk�00

�
+
�ml

4
�

00

1X
k=�1

(�1)
k
Jk
�
�ml�

00
�
Jk
�
kt�

00
�

� [Jm+k+1 (�mlr) � Jm+k�1 (�mlr)] [J1 (x+)� J1 (x�)] g (A19)

For the case of a strong toroidal magnetic �eld, the above result [Eq (A19)] can be con-

siderably simpli�ed. In the limit B� 7! 0, we note that bejj = B=B 7! b�0,
bb 7! b�0 and

�� = �� �0 7! 0. Using equation (A12), we have

hJm (�mlr) exp (im� + in�)igc = exp (im�0+ in�)Jm (�mlr0)J0
�
�ml�

00
�
; (A20)

since
D
exp

h
�ik

�
� +  

00

�iE
gc
= Æ (k). Operating with h:::ipart on equation (A20) and using

equation (A13), we get

D
hJm (�mlr) exp (im� + in�)igc

E
part

= exp (in�) hexp (im�0)Jm (�mlr0)ipart J0
�
�ml�

00
�

= exp (im� + in�)

�

*
1X

k=�1

Jm+k (�mlr) Jk
�
�ml�

00
�
exp

h
ik
�
� � �0 �  

00
�i+

part

J0
�
�ml�

00
�

= exp (im� + in�)
1X

k=�1

Jm+k (�mlr) Jk
�
�ml�

00
�
J0
�
�ml�

00
�

�
D
exp

h
ik
�
� � �0 �  

00
�iE

part

= exp (im� + in�)Jm (�mlr)J0
2
�
�ml�

00
�
; (A21)

which is the expression derived by Li et al.
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APPENDIX B: FLUX-SURFACE AVERAGE OF THE GKP EQUATION

In the local toroidal system fr; �; �g, the surface average of F is

hF iS �
1

A

Z 2�

0
d�

Z 2�

0
d�F (r; �; �)J (r; �) ; (B1)

where J = [rr� (r��r�)]
�1

= r (R0 + r cos �) is the Jacobian of the transformation and

A �
R 2�
0 d�

R 2�
0 d�J (r; �) = 4�2rR0 is the area of the magnetic surface. Then we note that

hexp (im� + in�)iS = Æ (n) Æ (m) +
r

2R0

Æ (n) [Æ (m+ 1) + Æ (m� 1)] ; (B2)

where the second term on the right-hand side is a �nite-toroidicity correction. The sur-

face average of
De�E

part
involves terms of the form hJk (F )Jl (G) Jm (H) exp (im�+ in�)ipart,

where, in general, F = F (r; �; �), G = G (r; �; �), H = H (r; �; �), and k; l;m are integers.

Without loss of generality, we can write

F (r; �; �) = F (1 � f) ; (B3)

where F (r) � hF iS is a 
ux surface quantity, and f (r; �; �) � 1 � F (r; �; �) =F . Similarly

one may write G = G (1� g) and H = H (1� h); by construction, we note that hfiS =

hgiS = hhiS = 0. Typically the ratio
���f=F ��� is of the order of the inverse aspect ratio. Using

a Taylor expansion

Jk (F ) = Jk
�
F
�
+
f

2

h
Jk+1

�
F
�
� Jk�1

�
F
�i
+ ::: (B4)

and similarly for Jl (G) and Jm (H), we obtain (neglecting higher-order corrections)

hJk (F )Jl (G)Jm (H) exp (im� + in�)iS = Jk
�
F
�
Jl
�
G
�
Jm

�
H
�
hexp (im�+ in�)iS

+
1

2
Jk
�
F
�
Jl
�
G
� h
Jm+1

�
H
�
� Jm�1

�
H
�i
hh (r; �; �) exp (im�+ in�)iS

+
1

2
Jk
�
F
�
Jm

�
H
� h
Jl+1

�
G
�
� Jl�1

�
G
�
)
i
hg (r; �; �) exp (im�+ in�)iS

+
1

2
Jl
�
G
�
Jm

�
H
� h
Jk+1

�
F
�
� Jk�1

�
F
�
)
i
hf (r; �; �) exp (im�+ in�)iS + ::: (B5)

Then, to leading order, the 
ux-surface average of
De�E

part
becomes
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�De�E
part

�
S

=
1X
l=1

1X
m=�1

1X
n=�1

�lmn

8<:Jm (�mlr) �
1X

k=�1

(�1)
k
Jk [�ml h�iiS V?]Jk [hkt�iiS V?]

Jm+k (�mlr) J0
h
[
Dbk�iE

S
V?
i
+
�ml

4
h�iiS V?

1X
k=�1

(�1)
k
Jk [�ml h�iiS V?]Jk [hkt�iiS V?]

[Jm+k+1 (�mlr)� Jm+k�1 (�mlr)] [J1 (y+V?)� J1 (y�V?)] + ::: g hexp (im�+ in�)iS ; (B6)

where y� � [(m� 1) =r + n=R0] h�iiS. Here h�iiS is the surface-average of the ion thermal

gyroradius �i � vthi=!c. Since the toroidal wavenumber kt / 1=R, we note that hkt�iiS 6=

kt h�iiS . Equation (B6) can be simpli�ed by using the following properties14 of the Bessel

functions JN (x) � (x=2)N =� (N + 1) for jxj 7! 0, and J�N (x) = (�1)N JN (x); whereas the

integral representation (A16) shows that Jk(0) = Æ(k). We obtain

�De�E
part

�
S

=
1X
l=1

�l00

"
J0 (�0lr) � J0 (�0l h�iiS V?) J0 (�0lr) +

�0l

2

�2=r

�(2)
V 2
?J1 (�0lr)J0 (�0l h�iiS V?) + :::

#
(B

Substituting equation (B7) in the GKP equation (3) we get

1X
l=1

�l00

�
J0 (�0lr)� J0 (�0lr)

�Z 1

0
V? exp

�
�V 2

?=2
�
J0 (�0l h�iiS V?) dV?

�

+
�0l

2

h�iiS
2
=r

�(2)
J1 (�0lr)

�Z 1

0
V 3
? exp

�
�V 2

?=2
�
J0 (�0l h�iiS V?) dV?

�
+ ::: ] =

Ti0

en0

D
ni � n(NA)e

E
S

(B8)

The �rst integral on the left-hand side of equation (B8) is of the form15

L� (�; �) =
Z 1

0
x�+1 exp

�
��x2

�
J� (�x) dx =

��

(2�)�+1
exp

 
�
�2

4�

!
: (B9)

Noting that

Z 1

0
x3 exp

�
��x2

�
J0 (�x)dx = �

@L0 (�; �)

@�
=

1

2�2

 
1�

�2

4�

!
exp

 
�
�2

4�

!
; (B10)

we obtain an equation governing the sheared-
ow modes in toroidal geometry

1X
l=1

�l00

(
J0 (�0lr)

h
1� exp

�
�C2

l =2
�i

+
(h�iiS =r)

�(2)
J1 (�0lr)Cl

 
1 �

C2
l

2

!
exp

�
�C2

l =2
�)

= D (r) ; (B11)

where Cl � �0l h�iiS and D (r) � Ti0
h
hniiS �

D
n(NA)e

E
S

i
= (en0).

16



REFERENCES

1W. M. Tang, Nucl. Fusion 18, 1089 (1978).

2W. Horton, Rev. Mod. Phys. 71, 735 (1999).

3 P. C. Liewer, Nucl. Fusion 25, 543 (1985).

4 F. Wagner and U. Stroth, Plasma Phys. Contr. Fusion, 35, 1321 (1993).

5K.H. Burrell, Phys. Plasmas 4, 1499 (1997).

6 P.H. Diamond, M.N. Rosenbluth, F.L. Hinton et al in Proceedings of the 17th IAEA

Conference on Controlled Fusion and Plasma Physics (Yokahama, Japan, 1997).

7T.S. Hahm and K.H. Burrell, Phys. Plasmas 2, 1648 (1995).

8W.W. Lee, Phys. Fluids 26, 556 (1983)

9 Z. Lin and W.W. Lee, Phys. Rev. E 52, 5646 (1995)

10W.W. Lee, J. Comput. Phys. 72, 243 (1987)

11T.S. Hahm, Phys. Fluids 31, 2670 (1988)

12 S.P. Hirshman and J.C. Whitson, Phys. Fluids 26, 3553 (1983).

13 S.P. Hirshman and H.K. Meier, Phys. Fluids 28, 1387 (1985).

14M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, (National Bureau

of Standards, Washington, 1965).

15 I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, (Academic

Press, New York, 1965).

16 P.H. Diamond and Y.-B. Kim, Phys. Fluids B 3(7), 1626 (1991).

17



Figure 1 Cylindrical coordinate system (R;Z; �) and local toroidal coordinate system

(rL; �L; �L � �) in toroidal geometry. A magnetic surface � = const (plain line) and a

tokamak-like magnetic surface (dotted line) are shown.

Figure 2 Using the local coordinate system (Figure 1), the particle position, r, and its

guiding center position, Rgc, can be labeled by (r; �; �) and (Rgc; �0; �0), respectively.

Here r � (r�r)
1=2

and Rgc � (Rgc�Rgc)
1=2
.

Figure 3 The perpendicular component of the particle velocity can be written as v? =

v?
�
cos'bn+ sin'bb�, where bn is normal to the magnetic surface, and bb / B�bn is the

binormal vector. The gyrradius vector, �, is de�ned as � � (B=B)�v=!c where !c is

the cyclotron frequency.
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FIG.1 Lewandowski et al
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FIG.2 Lewandowski et al
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FIG.3 Lewandowski et al
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